Automated Nonlinear System Modeling with Multiple Fuzzy Neural Networks and Kernel Smoothing

نویسندگان

  • Wen Yu
  • Xiaoou Li
چکیده

This paper, presents a novel identification approach using fuzzy neural networks. It focuses on structure and parameters uncertainties which have been widely explored in the literatures. The main contribution of this paper is that an integrated analytic framework is proposed for automated structure selection and parameter identification. A kernel smoothing technique is used to generate a model structure automatically in a fixed time interval. To cope with structural change, a hysteresis strategy is proposed to guarantee finite times switching and desired performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)

Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...

متن کامل

An Approach of Artificial Neural Networks Modeling Based on Fuzzy Regression for Forecasting Purposes

In this paper, a new approach of modeling for Artificial Neural Networks (ANNs) models based on the concepts of fuzzy regression is proposed. For this purpose, we reformulated ANN model as a fuzzy nonlinear regression model while it has advantages of both fuzzy regression and ANN models. Hence, it can be applied to uncertain, ambiguous, or complex environments due to its flexibility for forecas...

متن کامل

Monte Carlo Simulation to Compare Markovian and Neural Network Models for Reliability Assessment in Multiple AGV Manufacturing System

We compare two approaches for a Markovian model in flexible manufacturing systems (FMSs) using Monte Carlo simulation. The model which is a development of Fazlollahtabar and Saidi-Mehrabad (2013), considers two features of automated flexible manufacturing systems equipped with automated guided vehicle (AGV) namely, the reliability of machines and the reliability of AGVs in a multiple AGV jobsho...

متن کامل

Indirect Adaptive Control with Fuzzy Neural Networks via Kernel Smoothing

In this paper, a neurofuzzy adaptive control framework for discrete-time systems based on kernel smoothing regression is developed. Kernel regression is a nonparametric statistics technique used to determine a regression model where no model assumption has been done. Due to similarity with fuzzy systems, kernel smoothing is used to obtain knowledge about the structure of the fuzzy system and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 20 5  شماره 

صفحات  -

تاریخ انتشار 2010